3D Graphics

Introduction

1

What is computer graphics

Modeling -> how do we represent stuff

Rendering -> how do we print stuff on the screen

Animation -> how do we make stuff move

What is computer graphics

Modeling -> how do we represent stuff

Rendering -> how do we print stuff on the screen

Animation -> how do we make stuff move

Rendering : Transforming a <u>scene</u> into an <u>image</u>

Rendering : Transforming a <u>scene</u> into an <u>image</u>

Red Autumn Forest

By Robin Tran

What is an image

Images

2D array of pixels

Each Pixel stores a color

Color representation : Red Green and Blue

Representing color on three axis :

Question

Why did we choose red green and blue ?

(1 minute alone)

(2 minutes with your neighbors)

(5 minutes with the whole group)

Cone cell - > detect color

Rod cell - > detect intensity

A type of cone for blue A type of cone for green

A type of cone for red

A type of cone for blue A type of cone for green

A type of cone for red

RGB can represent all colors ?

Gamut: the subset of color achievable by a representation

RGB only represent a subset of the visible color

Visible color vs RGB color gamut

Additive Color

We emit light from the screen So color are added

What is a scene ?

Scene

Question

Why do we use triangles (and not quads, circles or other primitives)?

(1 minute alone)

(2 minutes with your neighbors)

(5 minutes with the whole group)

Everything is triangles

A quad is two triangle

Everything is triangles

A quad is two triangle

Triangle : Three point make a plane

Triangle : Three point make a plane

Triangle : Barycentric coordinates

Each point in the triangle is a linear composition of the three vertices

Triangles and how to store them

Mesh representation : Triangle soup

Each triangle is store as a set of three coordinates in the counter clockwise order

Example in 2D : one triangle

{x0,y0, x1,y1, x2,y2}

31

Mesh representation : Triangle soup

У

Each triangle is store as a set of three coordinates in the counter clockwise order

Example in 2D : one triangle

Mesh representation : Indexed Triangle

У

Each triangle is store as a set of three coordinates in the counter clockwise order

Example in 2D : one triangle

Vertices list {x0,y0, x1,y1, x2,y2}

{0,1,2}

Indices list

Mesh representation : Indexed Triangle

У

Each triangle is store as a set of three coordinates in the counter clockwise order

Example in 2D : one triangle

Vertices list {x0,y0, x1,y1, x2,y2, x3,y3}

Indices list { 0,1,2, -> triangle 1 2,1,3 -> triangle 2 }

Question

In the following triangles estimate the memory consumption of storing them as a soup and as an indexed list :

Camera

Scene : Camera

The camera is our point of view, it has a position in the scene:

Scene: Camera

Frustum : the visible part of the scene :

- Near plane
- Far plane
- Aspect ratio
- Field of View

